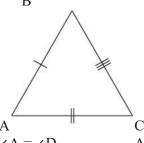


Chapter 6: Congruence and Similarity

Tests of Congruency

Side - Side - Side

В



C

$$\angle A = \angle D$$

AB = DE

$$\angle B = \angle E$$

 $\angle C = \angle F$

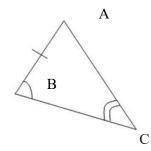
BC = EFAC = DF

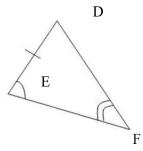
D

Е

So $\triangle ABC \cong \triangle DEF$ (SSS Rule)

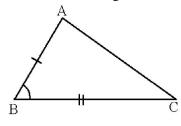
Angle – Side – Angle 2.





Let BC = EF, $\angle B = \angle E$, AB = DE, $\angle C = \angle F$ So $\triangle ABC \cong \triangle DEF$ (ASA Rule)

3. Side – Angle – Side





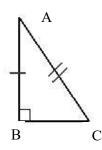
AB = EF

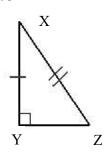
 $\angle ABC = \angle EFG$

BC = FG

So $\triangle ABC \cong \triangle EFG$ (SAS Rule)

4. Right angled – Hypotenuse – Side





$$\angle B = \angle Y = 90^{\circ}$$

$$AB = XY$$

$$AC = XZ$$

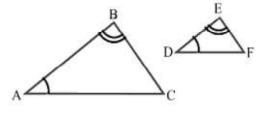
So
$$\triangle ABC \cong \triangle XYZ$$
 (SAS Rule)

Tests for Similarity

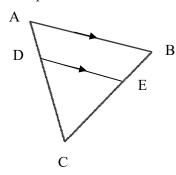
 \triangle ABC and \triangle DEF are similar if,

1. 2 pairs of corresponding angles are equal

i.e.
$$\angle A = \angle D$$
, $\angle B = \angle E$ (AA)



Example



In $\triangle ABC$ and $\triangle DEC$,

$$\angle ACB = \angle DCE$$
 (common)

$$\angle$$
 ABC = \angle DEC (corresponding angles)

$$\angle$$
 BAC = \angle EDC (corresponding angles)

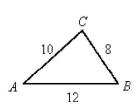
 \therefore \triangle ABC is similar to \triangle DEC (AA Similarity)

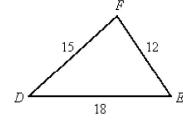
2. 3 pairs of corresponding sides are in the same ratio

$$\frac{\overrightarrow{AB}}{DE} = \frac{BC}{EF} = \frac{\overrightarrow{AC}}{DF}$$

i.e.
$$DE = EF = DF$$
 (SSS)

Example





In $\triangle ABC$ and $\triangle DEF$,

$$\frac{AB}{DE} = \frac{12}{18} = \frac{2}{3}, \quad \frac{BC}{EF} = \frac{8}{12} = \frac{2}{3}, \quad \frac{AC}{DF} = \frac{10}{15} = \frac{2}{3}$$

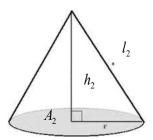
∴ ∆ABC is similar to ∆DEF (SSS Similarity)

Ratio of Areas of Similar Figures

If 2 figures are similar, then the ratio of their areas is given by

$$\frac{A_1}{A_2} = \left(\frac{h_1}{h_2}\right)^2 = \left(\frac{l_1}{l_2}\right)^2$$

Ratio of Volumes of Similar Solids



For 2 geometrically similar solids,

the ratio of their length or heights are $l_1:l_2$ and $h_1:h_2$

then the ratio of their areas is given by $\frac{A_1}{A_2} = \left(\frac{h_1}{h_2}\right)^2 = \left(\frac{l_1}{l_2}\right)^2$

and the ratio of their volumes is given by $\frac{V_1}{V_2} = \left(\frac{h_1}{h_2}\right)^3 = \left(\frac{l_1}{l_2}\right)^3$